skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kuppermann, Nathan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Li-Jessen, Nicole Yee-Key (Ed.)
    Objective The Pediatric Emergency Care Applied Research Network (PECARN) has developed a clinical-decision instrument (CDI) to identify children at very low risk of intra-abdominal injury. However, the CDI has not been externally validated. We sought to vet the PECARN CDI with the Predictability Computability Stability (PCS) data science framework, potentially increasing its chance of a successful external validation. Materials & methods We performed a secondary analysis of two prospectively collected datasets: PECARN (12,044 children from 20 emergency departments) and an independent external validation dataset from the Pediatric Surgical Research Collaborative (PedSRC; 2,188 children from 14 emergency departments). We used PCS to reanalyze the original PECARN CDI along with new interpretable PCS CDIs developed using the PECARN dataset. External validation was then measured on the PedSRC dataset. Results Three predictor variables (abdominal wall trauma, Glasgow Coma Scale Score <14, and abdominal tenderness) were found to be stable. A CDI using only these three variables would achieve lower sensitivity than the original PECARN CDI with seven variables on internal PECARN validation but achieve the same performance on external PedSRC validation (sensitivity 96.8% and specificity 44%). Using only these variables, we developed a PCS CDI which had a lower sensitivity than the original PECARN CDI on internal PECARN validation but performed the same on external PedSRC validation (sensitivity 96.8% and specificity 44%). Conclusion The PCS data science framework vetted the PECARN CDI and its constituent predictor variables prior to external validation. We found that the 3 stable predictor variables represented all of the PECARN CDI’s predictive performance on independent external validation. The PCS framework offers a less resource-intensive method than prospective validation to vet CDIs before external validation. We also found that the PECARN CDI will generalize well to new populations and should be prospectively externally validated. The PCS framework offers a potential strategy to increase the chance of a successful (costly) prospective validation. 
    more » « less